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Abstract: By weakly gauging one of the U(1) subgroups of the R-symmetry group, N = 4

super-Yang-Mills theory can be coupled to electromagnetism, thus allowing a computation

of photon production and related phenomena in a QCD-like non-Abelian plasma at both

weak and strong coupling. We compute photon and dilepton emission rates from finite tem-

perature N = 4 supersymmetric Yang-Mills plasma both perturbatively at weak coupling

to leading order, and non-perturbatively at strong coupling using the AdS/CFT duality

conjecture. Comparison of the photo-emission spectra for N = 4 plasma at weak coupling,

N =4 plasma at strong coupling, and QCD at weak coupling reveals several systematic

trends which we discuss. We also evaluate the electric conductivity of N = 4 plasma in the

strong coupling limit, and to leading-log order at weak coupling. Current-current spectral

functions in the strongly coupled theory exhibit hydrodynamic peaks at small frequency,

but otherwise show no structure which could be interpreted as well-defined thermal reso-

nances in the high-temperature phase.
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1. Introduction

Any thermal medium composed of electrically charged particles emits photons. The energy

spectrum of the produced photons depends on the details of the system: the spectrum is

Planckian when the photons are in thermal equilibrium, and deviates from it when they

are not. The quark-gluon plasma (QGP) produced in heavy ion collisions is expected to

be optically thin, because of its limited extent and the small value of the electromagnetic

coupling αEM. Therefore, a photon, once emitted, should stream through the QCD plasma

virtually without subsequent interaction [1]. In such a situation, the photon spectrum will

have little to do with the black-body distribution, but may instead give valuable information

about the properties of the medium. For instance, while the experimental results [2, 3] for

photon production at RHIC are currently consistent with pion decay plus prompt photons

produced by the initial scattering of the partons from the two nuclei [4], there is room for

photons produced in the hot plasma.

While prompt photons really are perturbative, and pion decay photons can be cali-

brated from other hadronic signals, the most interesting signal, photon production from the
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medium, suffers from the usual problem that we only have weak coupling calculations [5]

for QGP photon production, despite the fact that the medium is probably strongly cou-

pled. Therefore, any guidance on the behavior of photon production as a function of

coupling would be useful, even if it comes from an analogue theory which is not quite real

QCD. With this in mind, we will calculate photon production in N = 4 supersymmetric

Yang-Mills theory, where strong coupling techniques exist.

Consider a field theory in thermal equilibrium, and let the photon interaction with

matter be of the form eJEM
µ Aµ, where the electromagnetic coupling e is so small that the

photons are not rescattered and thermalized. If Γγ denotes the number of photons emitted

per unit time per unit volume, then to leading order in e the rate is given by [6]

dΓγ =
d3k

(2π)3
e2

2|k| ηµνC<
µν(K)

∣

∣

∣

k0=|k|
, (1.1)

where

C<
µν(K) =

∫

d4X e−iK·X 〈JEM
µ (0)JEM

ν (X)〉 (1.2)

is the Wightman function of electromagnetic currents, and the expectation value is taken

in the thermal equilibrium state. Here ηµν = diag(−+++) is the Minkowski metric, and

K ≡ (k0,k) is a null 4-vector1 whose time component is fixed by the on-shell condition

k0 = |k|. The Wightman correlator (1.2), in thermal equilibrium, is related to the spectral

density,

C<
µν(K) = nb(k

0)χµν(K) , (1.3)

where nb(k
0) = 1/(eβk0−1) is the usual Bose-Einstein distribution function, and χµν(K)

is the spectral density, proportional to the imaginary part of the retarded current-current

correlation function,

χµν(K) = −2 Im Cret
µν (K) . (1.4)

If one also adds to the theory massive fermions which carry only electric charge (“lep-

tons”), then the thermal system will also emit these leptons, produced by virtual photon

decay. The same electromagnetic current-current correlation function, evaluated for time-

like momenta, gives the rate of lepton pair production for each such lepton species [6]:

dΓ`¯̀ =
d4K

(2π)4
e2 e2

`

6π|K2|5/2
Θ(k0)Θ(−K2−4m2) [−K2−4m2]1/2 (−K2+2m2) ηµνC<

µν(K) .

(1.5)

Here e` is the electric charge of the lepton, m is lepton mass, and the correlator C<
µν(K) is

evaluated at the timelike momentum of the emitted particle pair. [Θ(x) denotes a unit step

function.] Expressions (1.1) and (1.5) for the production rates are true to leading order

in the electromagnetic couplings e and e`, but are valid non-perturbatively in all other

interactions.

1We follow the common thermal field theory convention that 4-vectors are capitalized while their com-

ponents are lower case.
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The electrical conductivity σ of the medium is also determined by the current-current

correlator, specifically its zero-frequency limit at vanishing three-momentum,2

σ = lim
k0→0

e2

6T
ηµνC<

µν(k0,k=0) . (1.6)

An equally valid alternative expression relates the conductivity to the the small frequency

limit of the correlator for lightlike momenta,

σ = lim
k0→0

e2

4T
ηµνC<

µν(K)
∣

∣

∣

|k|=k0
. (1.7)

This form, which will be useful in our discussion of the photon production rate, follows from

the Ward identity KµC<
µν(K) = 0 combined with the diffusive nature of the hydrodynamic

pole in the correlator.

Both photon and dilepton production rates have previously been calculated in QCD

in perturbation theory to leading order in αs [i.e., up to relative corrections suppressed

by powers of αs] [5, 7]. There are also non-perturbative lattice estimates of the dilepton

emission rate at zero three-momentum [8], and of the electric conductivity [9], based on

attempts to fit the Euclidean correlator using parameterized forms of the spectral density.

Reports of lattice studies of current-current spectral functions at non-zero momentum have

appeared recently [10]. (However, the results of these efforts to extract real-time physics

from Euclidean lattice simulations are quite sensitive to the assumptions made about the

form of the spectral density. Assessing the reliability of these results is not easy; see, for

example, ref. [11].)

In this paper, we calculate photon and dilepton production rates in SU(Nc), N =4 su-

persymmetric Yang-Mills (SYM) theory at finite temperature and zero chemical potential,

at both weak and strong coupling. This theory, at non-zero temperature, mimics many fea-

tures of high-temperature QCD. It is a non-Abelian plasma which happens to have adjoint

representation fermions and scalars instead of fundamental representation quarks. Despite

this difference in matter field content, thermal SYM theory exhibits deconfinement, Debye

screening, area-law behavior of spatial Wilson loops, and a finite static correlation length,

just like hot QCD. But unlike QCD, real-time thermal properties of N = 4 SYM theory

can be studied analytically at strong coupling.3 Consequently, in SYM theory one may

calculate, reliably, interesting physical observables at both weak and strong coupling. In

particular, the calculation of thermal spectral functions in strongly coupled SYM theory

is vastly simpler than the corresponding problem in strongly coupled QCD. Full spectral

functions of the energy-momentum tensor, at strong coupling, were calculated recently in

refs. [13, 14], explicitly showing that strongly coupled SYM theory behaves much more like

2This Kubo formula for the conductivity is more commonly written in terms of the purely spatial part

of the correlator, σ = limk0→0
e2

6T
C<

ii (k
0, k=0). The form (1.6) is equivalent since transversality of the

current-current correlator implies that C<
00(k

0, k=0) = 0 for any non-zero frequency.
3N =4 SYM theory is a conformal field theory, whose coupling is a fixed, scale-independent parameter.

The accessibility of the strong coupling regime in SYM theory is due to gauge-string duality [12], commonly

referred to as AdS/CFT correspondence. Though not proven rigorously, this duality has survived an

impressive number of consistency tests and we assume its validity.
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a liquid, rather than a weakly interacting gas of quasi-particles. At the same time, weak-

coupling calculations of the photon emission rates in SYM theory are qualitatively similar

to those in QCD, and detailed comparison of the results can shed light on the degree to

which thermal QCD can be quantitatively modeled by N =4 SYM theory.

Our paper is organized as follows. In section 2 we discuss how to couple the degrees

of freedom of N = 4 SYM theory to electromagnetism. In section 3 we calculate the trace

of the spectral function χµ
µ(K) ≡ ηµνχµν(K) in strongly coupled SYM theory for arbi-

trary momenta. The behavior of the spectral functions at small frequencies is in complete

agreement with the prediction of linear response for hydrodynamic fluctuations of the con-

served charge density. We find a finite result, σ = e2N2
c T/16π, for strong coupling limit

of the electric conductivity of N =4 SYM theory. In section 4 we compute the current-

current spectral function in weakly coupled SYM theory, for both timelike and lightlike

momenta, for frequencies large compared to λ2 T , which is the scale where hydrodynamic

effects become important. (Here λ ≡ g2Nc is the ’t Hooft coupling.) This weak-coupling

analysis generalizes the corresponding calculation for QCD performed by Arnold, Moore

and Yaffe [5]. In the final section 5 we compare the photon emission spectra for SYM and

QCD at weak coupling, and SYM at strong coupling, and discuss the relevant lessons which

can be drawn. We find that the weak-coupling behavior of SYM is quite similar to that

of QCD provided one compares the theories at the same values of thermal masses, rather

than equal values of ’t Hooft coupling (although SYM theory has somewhat more soft

photons relative to hard photons in comparison with QCD). The strongly coupled theory

has a greater photon production rate at large momentum, relative to the weakly coupled

theory, but less production at small momenta (k ¿ λ2/3 T ). The production of large mass

dilepton pairs is essentially identical between the weakly and strongly coupled theories.

2. Coupling N = 4 super-Yang-Mills to electromagnetism

The field content of N =4 SYM theory consists of SU(Nc) gauge bosons, plus four Weyl

fermions ψp and six real4 scalars φpq ≡ −φqp, p, q = 1, . . . , 4, transforming in the adjoint

representation of SU(Nc). The theory has an anomaly free global SU(4) R-symmetry, under

which the fermions transform in the 4 and the scalars in the 6. To model electromagnetic

interactions, we add to the theory a U(1) gauge field coupled to the conserved current

corresponding to a U(1) subgroup of the SU(4) R-symmetry.

We will choose the U(1) subgroup generated by t3 ≡ diag(1
2 ,−1

2 , 0, 0), under which

two of the Weyl fermions have charge ±1
2 and two complex scalars have charge 1

2 . The

associated conserved current is

JEM
µ ≡ 1

e

δSint

δAµ
= 1

2

[

ψa†
1 σ̄µψa

1 − ψa†
2 σ̄µψa

2 +
∑

p=3,4

φa†
1p(−i ~Dµ + i

←
Dµ)φa

1p

]

. (2.1)

A summation over the SU(Nc) group index a is implied in eq. (2.1). The covariant derivative

Dµ acting on the scalars involves both the SU(Nc) gauge fields and the U(1) electromag-

4It is convenient to regard the scalar fields as components of an antisymmetric complex matrix satisfying

the reality condition (φpq)
† = 1

2
εpqrsφrs.
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netic potential Aµ (with coefficient e
2). However, the dependence on the U(1) gauge field,

reflecting quadratic dependence on Aµ in the scalar field part of Sint, does not contribute

to the emission rates at leading-order in e2 and can be ignored.5 So for our purposes we

can treat the electromagnetic interaction as being linear in Aµ, with Lint = eJ3
µ Aµ, where

J3
µ is the t3 component of the R-current in pure N = 4 SYM. We further add to the theory

one or more “leptons” ` which are fermions with electric charge e`, but with no direct

interactions with any SYM fields. Hence, our complete Lagrange density is

L = LSYM + Lint − 1
4F 2

µν − ¯̀( /D + m)` . (2.2)

We will refer to the theory of eq. (2.2) as SYM-EM theory.6 For comparisons with QCD,

one should regard LSYM as modeling strongly interacting quark and gluon fields, while Aµ

describes the photon and ` represents the electron and/or muon.

The photons and leptons, once produced, are assumed to stream through the SYM

medium with negligible further interaction, due to a small value of e2. Hence their emission

rates, to leading-order in e2, are completely determined by the correlation function of R-

currents, 〈J3
µ(0)J3

ν (x)〉, with the expectation value taken in the thermal equilibrium state

of SYM theory. The evaluation of this correlation function can be conducted purely within

SYM theory, with no further reference to the EM sector. Inserting the result into eqs. (1.1)

and (1.5) will yield the photon and dilepton differential emission rates for N = 4 SYM.

The choice (2.1) for the electromagnetic U(1) current is not unique. Choosing an

embedding of U(1) within the SU(4)R symmetry group is equivalent to choosing a specific

linear combination of Cartan subalgebra generators. In other words, the most general

choice for electromagnetic charge may be expressed as

QEM =

3
∑

a=1

βa Qa . (2.3)

where Q1 ≡ 1
2 diag(1, 1,−1,−1), Q2 ≡ 1

2 diag(1,−1, 1,−1), and Q3 ≡ 1
2 diag(1,−1,−1, 1)

are a convenient set of Cartan generators. Our particular choice of U(1) embedding, cor-

responding to β1 = 0, β2 = β3 = 1
2 , gives the charged fermions and charged scalars equal

magnitude charges, and yields an SYM-EM theory which is anomaly free.7 It also happens

to make the sum of squares of fermion charges equal in Nc = 3, N = 4 SYM and three-flavor

QCD.8

The SU(4)R symmetry of N = 4 SYM guarantees that the R-symmetry current-current

correlator 〈Ja
µJb

ν〉 is proportional to δab. [Here a, b = 1 · · · 15 are SU(4) Lie algebra indices,

5In the retarded current-current correlator, this term generates an O(e2) momentum independent contact

term which does not contribute to the imaginary part of the correlator.
6We would like to stress that, unlike SYM theory, SYM-EM theory does not have a known string dual

description.
7In an arbitrary background SU(4) gauge field, the divergence of the R-current acquires an anoma-

lous contribution, ∂µJa
µ ∝ dabcF b

µνF µνc. For our chosen U(1) embedding, d333=2 tr(t3{t3, t3})=0, so our

electromagnetic current (2.1) is anomaly-free.
8In N = 4 SYM this is 1

4
(N2

c −1) = 2 (counting Dirac fermion fields), while in QCD with real-world

charge assignments it is 3 × ( 4
9

+ 1
9

+ 1
9
) = 2.
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and an orthonormal Lie algebra basis is assumed.] Consequently, if one keeps the choice

of U(1) embedding completely general, as in eq. (2.3), then the resulting electromagnetic

correlator C<
µν depends on the choice of embedding merely through an overall normalization

factor of β2
1 + β2

2 + β2
3 (which is 1/2 for our particular embedding). Although it would be

easy to leave the choice of embedding completely arbitrary, to simplify formulas we will

use our specific choice in the next two sections. In the final discussion we will address the

question of what overall normalization of the electromagnetic current in SYM-EM is most

appropriate when making comparisons with QCD.

3. Photon and dilepton production rates at strong coupling

The large Nc, large ’t Hooft coupling limit of N = 4 SYM theory in a four-dimensional

Minkowski space at finite temperature T has a dual description in terms of the gravitational

background with a five-dimensional asymptotically AdS metric

ds2 =
(πTR)2

u

[

−f(u) dt2 + dx2 + dy2 + dz2
]

+
R2

4u2f(u)
du2 , (3.1)

where f(u) = 1 − u2, u ∈ [0, 1], and R is the curvature radius of the AdS space. The

metric (3.1) describes a spacetime with a horizon at u = 1 with Hawking temperature T ,

and a boundary (where one can regard the dual field theory as residing) at u = 0.

A method for computing the retarded correlation functions of R-currents in the dual

gravitational description was formulated in refs. [15, 16]. Subsequently, the locations of

singularities of the retarded correlator Cret
µν (K) in the complex frequency plane were found

in refs. [17, 18], and the spectral function at zero three-momentum was computed in ref. [14].

Here we shall determine the spectral function of the R-currents at arbitrary momenta, and

relate them to the photon and dilepton production rates, respectively.

At zero temperature, the correlation function has the form dictated by Lorentz and

gauge invariance,

Cret
µν (K) = Pµν(K)Π(K2) , (3.2)

where Pµν(K) = ηµν−KµKν/K2 is the usual transverse projector, and K2≡−k2
0 + k2. For

the corresponding spectral function one finds9

χµν(K) = −2 Im Cret
µν (K) = Pµν(K)

N2
c

16π
|K2| Θ(−K2) sgn(k0) . (3.3)

9Except for the overall coefficient, the form of the zero-temperature result (3.3) is completely deter-

mined by Lorentz, gauge, and scale invariance. In zero-temperature SYM, the R-current two-point function

is protected by non-renormalization theorems, and thus is independent of the coupling [19]. The overall

coefficient is therefore fixed by the one-loop spectral function evaluated in the free theory. In the electro-

magnetic current (2.1), the two Weyl fermions can be combined to form one Dirac fermion, and for the

Feynman correlator one finds ΠF (K) = 1
4π

K2

3π

N2
c
−1

4
(1+ 1

2
)[ln(K2/µ2) − 2]. Here µ is the MS renormal-

ization scale, a factor of 1
4

comes from electric charge assignment, and the factor of (1+ 1
2
) signifies that

there are two charged scalars, each contributing one quarter as much as a Dirac fermion. The spectral

function is obtained from the relation ΠF (K) = Re Π(K) + i sign(k0) Im Π(K). At spacelike momenta,

ΠF (K) has no imaginary part, while at time-like momenta one has to choose k0 → k0+iε which gives

ln(K2−iεk0)/µ2 = iπ + ln(−K2)/µ2 (for positive k0). The spectral function χµν(K) = −2Pµν Im Π(K), at

large Nc, is then given by the result (3.3).

– 6 –
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At non-zero temperature, rotation plus gauge invariance implies that the correlator has

the form

Cret
µν (K) = P T

µν(K)ΠT (k0, k) + PL
µν(K)ΠL(k0, k) , (3.4)

where the transverse and the longitudinal projectors are defined in the standard way as

P T
00(K) = 0, P T

0i(K) = 0, P T
ij (K) = δij −kikj/k

2, and PL
µν(K) ≡ Pµν(K)−P T

µν(K). Spatial

indices i, j run over x, y, z and k ≡ |k|. Thus the trace of the retarded two-point function

is ηµνCret
µν = 2ΠT + ΠL and the trace of the spectral function is

χµ
µ(k0, k) = −4 ImΠT (k0, k) − 2 ImΠL(k0, k) . (3.5)

Both ΠT and ΠL contribute to the dilepton rate, but only ΠT contributes to the photon

emission rate, because the longitudinal part must vanish for lightlike momenta (otherwise

the correlator would be singular on the lightcone). According to the gauge/gravity duality

prescription [12], two-point functions of conserved currents in SYM theory are calculated

by analyzing linearized perturbations of a U(1) gauge field AC (having nothing to do with

the electromagnetic potential discussed in the previous section) on the five-dimensional

AdS-Schwarzschild gravitational background (3.1). These perturbations obey Maxwell’s

equations, ∂A(
√−g gABgCDFBD) = 0, where gAB is the metric of the background space-

time (3.1), and FBD = ∂BAD − ∂DAB is the Maxwell field strength. The Bianchi identity

for FBD then implies that the electric fields Ei ≡ F0i obey the equations [18]:

E′′
⊥ +

f ′

f
E′

⊥ +
w2 − q2f

uf2
E⊥ = 0 , (3.6a)

E′′
‖ +

w2f ′

f(w2 − q2f)
E′

‖ +
w2 − q2f

uf2
E‖ = 0 , (3.6b)

where w ≡ k0/(2πT ), q ≡ k/(2πT ), primes denote derivatives with respect to u, and the

subscript refers to the component which is either perpendicular or parallel to the direction

of the three-momentum k. The equations (3.6) have singular points at u= ± 1, 0 and

∞.10 At u=1 (the horizon), the exponents are ∓iw/2. These two exponents correspond

to two local solutions representing waves coming into or emerging from the horizon. To

compute the retarded correlators, one has to impose the incoming wave boundary condition

at the horizon, thus choosing −iw/2 as the correct exponent [15]. At u=0 (the boundary),

the exponents for both equations (3.6) are 0 and 1. Solutions to eqs. (3.6) satisfying the

incoming-wave condition at the horizon can be written as a linear combination of two local

solutions near the boundary,

Ei(u) = Ai Z
I
i (u) + Bi Z

II
i (u) , (3.7)

where the index i labels the components of the electric field (and no summation over i is

implied). The solutions ZI
i and ZII

i are given by their standard Frobenius expansions [20]

near u=0,

ZI
i (u) = 1 + hiZ

II
i (u) ln u + b

(1)
iI u + · · · , (3.8a)

10The longitudinal equation (3.6b) also has an integrable singularity, with exponents 0 and 2, at u2 =

1−w2/q2. When integrating the equation for spacelike Minkowski momenta, this singularity may be avoided

by making an infinitesimal Wick rotation.
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ZII
i (u) = u

(

1 + b
(1)
iII u + b

(2)
iII u2 + · · ·

)

. (3.8b)

All the coefficients {b(j)
iI } (except b

(1)
iI ), {b(j)

iII }, and hi are determined by the recursion

relations obtained by substituting the above expansion into the differential equations (3.6);

for example, hi = q2 − w2. Without loss of generality, one can set b
(1)
iI = 0, thus fixing the

definition of ZI
i (u).

The correlators are essentially determined by the boundary term of the five-dimensional

on-shell Maxwell action [15, 16, 18]

SB =
N2

c T 2

16
lim
u→0

∫

d4K

(2π)4

[

f

q2f−w2
E′

‖(u,K)E‖(u,−K) − f

w2
E′

⊥(u,K)·E⊥(u,−K)

]

.

(3.9)

Applying the Lorentzian AdS/CFT prescription [15], one finds11

ΠL(k0, k) = −N2
c T 2

8
lim
u→0

E′
‖(u,K)

E‖(u,K)
, ΠT (k0, k) = −N2

c T 2

8
lim
u→0

E′
⊥(u,K)

E⊥(u,K)
. (3.10)

Choosing, for convenience, the three momentum k to lie along the z direction, so that

E⊥ = (Ex, Ey), and E‖ = Ez, and using the expansions (3.7) and (3.8), the retarded

correlation functions reduce to [18]

ΠL(k0, k) = −N2
c T 2

8

Bz(k
0, k)

Az(k0, k)
, ΠT (k0, k) = −N2

c T 2

8

Bx(k0, k)

Ax(k0, k)
. (3.11)

To evaluate the correlators, one isolates the incoming wave part of the fluctuating field by

finding solutions to eq. (3.6) of the form12

Ei(u) = (1 − u)−iw/2 (1 + u)−w/2 yi(u) , (3.12)

where yi(u) is regular at u = 1. Given the solution [obtained by integrating eq. (3.6) nu-

merically, if necessary], one may extract the coefficients Ai and Bi from the near-boundary

behavior, and obtain the resulting correlators from eq. (3.11).13

3.1 Lightlike momenta

For light-like momenta, w=q, inserting the ansatz (3.12) into the transverse electric field

equation (3.6a) produces a hypergeometric equation, and yields the analytic solution

Ex(u) = (1 − u)−iw/2(1 + u)−w/2
2F1

(

1 − 1
2(1+i)w ,−1

2(1+i)w ; 1−iw; 1
2(1−u)

)

, (3.13)

11A contact term, proportional to K2, is to be discarded in this expression. This contact term is real,

and does not contribute to the physically relevant spectral function.
12The factor (1−u)−iw/2 is dictated by the incoming-wave condition at u=1. Separating a factor

(1+u)−w/2 in addition is a matter of technical convenience.
13Instead of integrating eq. (3.6), with boundary condition (3.12) outward from the horizon to the bound-

ary, and extracting the coefficients Ai and Bi from the near-boundary behavior, improved numerical stability

may be obtained if one also integrates inward from the boundary to find directly the solutions ZI
i (u) and

ZII
i (u) with the prescribed boundary behavior (3.8). The coefficients Ai and Bi in eq. (3.7) may then be

determined from the values and derivatives of these three solutions at an arbitrary interior point within the

interval [0,1].
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where 2F1(a, b; c; z) is Gauss’s hypergeometric function. To extract the imaginary part of

the retarded correlator, which is all we need, it is convenient to convert (3.10) to the form

Im ΠT (k0, k) = −N2
c T 2

8
Im

[

f(u)F⊥(u,K)∗ F ′
⊥(u,K)

]

, (3.14)

with F⊥(u,K) ≡ Ex(u,K)/Ex(0,K). This formula for Im ΠT reduces to (the imaginary

part of) eq. (3.10) in the limit u → 0, but expression (3.14) [which is effectively the

Wronskian of F⊥ and its complex conjugate] is actually independent of u. Instead of

taking the u → 0 limit, it is more convenient to evaluate this in the limit u → 1. Using the

solution (3.13), we find

Im ΠT (K) = −N2
c T 2

8
Im

iw

D(w)
, (3.15)

where the denominator is a product of two hypergeometric functions,

D(w) = 2F1

(

1 + 1
2(1+i)w , 1

2 (1+i)w ; 1+iw; 1
2

)

2F1

(

1 − 1
2 (1+i)w ,−1

2(1+i)w ; 1−iw; 1
2

)

.

(3.16)

With the help of the identity 2F1 (a, b; c; z) = (1−z)−a
2F1 (a, c−b; c; z/(z−1)) [21], the

denominator can be written as

D(w) = 4
∣

∣

2F1

(

1 − 1
2(1+i)w, 1 + 1

2(1−i)w; 1−iw;−1
)
∣

∣

2
. (3.17)

Therefore, the spectral function for light-like momenta is

χµ
µ(k0=k) = −4 Im ΠT (k0=k) =

N2
c T 2 w

8

∣

∣

2F1

(

1 − 1
2(1+i)w, 1 + 1

2(1−i)w; 1−iw;−1
)
∣

∣

−2
.

(3.18)

This result shows that the trace of the spectral function χµ
µ(K) is manifestly positive,

as it should be. (Note that for light-like momenta, χtt = χzz, and therefore χµ
µ = 2χxx.)

The asymptotic behavior for small and large frequencies is14

χµ
µ(w=q) ∼















1
2N2

c T 2
[

w−π2

12 w3 + O(w5)
]

, w ¿ 1 ;

1
4N2

c T 2 w2/3 35/6 Γ(2
3 )/Γ(1

3 ) + O(1) , w À 1 .

(3.19)

A graph of the trace of the spectral function at light-like momentum, together with

the asymptotics (3.19), is shown in figure 1. The leading small-frequency behavior agrees

with that found earlier in ref. [16], where it was used to evaluate the diffusion constant

of R-charge in SYM theory. The expression (3.18) for the spectral function is valid to

leading order in the limit of large Nc and large ’t Hooft coupling. This result shows that

the photon production rate for N = 4 SYM theory approaches a finite limit as λ → ∞.

3.2 Timelike and spacelike momenta

At time-like momenta, both ΠT and ΠL contribute to χµ
µ(k0, k). The mode equations (3.6)

cannot be solved analytically for arbitrary frequency and wavevector, so we determine the

14These asymptotics are derived in appendix A. A simple approximation which is asymptot-

ically correct and accurate to better than 2% for all frequencies is χµ
µ(w=q) ≈ 1

2
N2

c T 2w
`

1 +
1

729
[
√

π
2

35/6Γ( 2
3
)/Γ( 1

3
)]24w4

´1/24
/(1 + 1

3
π2w2)1/4.
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w
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w

w ≡ k0/(2πT )

Figure 1: Trace of the spectral function for lightlike momenta divided by frequency,

ηµνχµν(w=q)/w, in units of 1
2
N2

c T 2, plotted as a function of frequency, with w ≡ k0/(2πT ) and

q ≡ |k|/(2πT ). At small frequency, χµ
µ(w=q)/w approaches a constant limiting value, while at

large frequency χµ
µ(w=q)/w falls as w−1/3. The solid (red) line shows the exact result (3.18) while

the dashed lines show the low- and high-frequency asymptotics (3.19).
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4.0
q−q−

q+

∆χL(w, q)

Figure 2: Transverse and longitudinal spectral functions for time-like momenta, shown in the

(w, q) plane. Axes are q± = w ± q; the tip of the light-cone is on the left. The graphs show

finite-temperature contributions to χT ≡ χxx + χyy (left), and χL ≡ −χtt + χzz (right), plotted

in units of 1
2
N2

c T 2. The subtracted zero-temperature contributions are χT (w, q)|T=0 = π(w2−q2),

and χL(w, q)|T=0 = π
2
(w2−q2). Note that χL(w, q) is zero on the light-cone because χtt(k

0=k) =

χzz(k
0=k).

spectral function numerically, as explained above. The result is shown in figure 2, where we

plot the temperature-dependent portion of the transverse and longitudinal contributions

to the spectral function in the (k0, k) plane, defined as

∆χT (k0, k) ≡ P T
µν(K)

[

χµν(k0, k) − χµν
T=0(k

0, k)
]

= χxx(k
0, k) + χyy(k

0, k) − N2
c

8π

[

(k0)2−k2
]

Θ((k0)2−k2) sgn(k0) , (3.20)

∆χL(k0, k) ≡ PL
µν(K)

[

χµν(k0, k) − χµν
T=0(k

0, k)
]
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Figure 3: Spectral function trace χµ
µ(k0, k) (left) and χµ

µ(k0, k)/w (right), in units of N2
c T 2/2,

plotted as a function of w ≡ k0/(2πT ). The different curves correspond to differing values of

the momentum; from left to right, q ≡ k/(2πT ) = 0, 1.0, 1.5. The dotted black lines show the

zero-temperature result.

0.5 1 1.5 2 2.5 3 3.5 4
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-0.25
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w = k0/(2πT )

∆
χ

µ µ
(w

,q
)

Figure 4: Deviation of the spectral function trace χµ
µ(k0, k) from its zero temperature limit, in

units of N2
c T 2/2, as a function of w ≡ k0/(2πT ). The different curves correspond to differing values

of the momentum; q ≡ k/(2πT ) = 0 (blue), 1.0 (red), 1.5 (green), and 2.0 (brown). The curves

at non-zero momentum have cusps on the light cone [at w = 1, 1.5, and 2, respectively] where

the zero-temperature result first turns on in a non-analytic fashion. The dotted line showing the

envelope of the cusps is the plot of χµ
µ on the lightcone.

= χzz(k
0, k) − χtt(k

0, k) − N2
c

16π

[

(k0)2−k2
]

Θ((k0)2−k2) sgn(k0) . (3.21)

The complete result for χµ
µ is plotted in figure 3 as a function of frequency for several

values of the spatial momentum. As these plots show, χµ
µ rapidly approaches the zero-

temperature curve as the frequency increases. The oscillatory finite-temperature deviations

are shown directly in figure 4.

Slices of transverse and longitudinal spectral densities at fixed frequency, plotted as a

function of spatial momentum, are shown in figure 5. Note that the longitudinal spectral

density is not always positive (for positive frequencies). The components χzz and χtt are
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Figure 5: Transverse (left) and longitudinal (right) spectral functions plotted as a function of

q = k/(2πT ), for several values of the frequency, in units of N2
c T 2/2. The different curves correspond

to differing values of the frequency; from left to right, w ≡ k0/(2πT ) = 0.2 (blue), 0.5 (red), and

1.0 (green). The dashed black lines show the corresponding zero temperature result.

individually both positive (for positive frequencies), but their difference χL = χzz − χtt

can have either sign. As one moves deeper into the spacelike region, the spectral densities

rapidly decrease.

At small frequency and small momentum, the longitudinal spectral density χL = χzz−
χtt has hydrodynamic structure which cannot be resolved in figures 3 and 5. The time-time

and longitudinal space-space components should behave as

χtt(ω, k) ∼ 2ωDk2

ω2 + (Dk2)2
Ξ , χzz(ω, k) ∼ 2ω3D

ω2 + (Dk2)2
Ξ , (3.22)

where ω ≡ k0, D is the R-charge diffusion constant, and Ξ ≡ β〈Q2〉/(volume) is the charge

susceptibility. As the spatial momentum k → 0, χtt(ω, k)/ω approaches a delta-function

in frequency (times 2πΞ). This behavior is shown on the left in figure 6. The longitudinal

space-space spectral function χzz, divided by w2, is displayed on the right in figure 6 as a

function of frequency for various values of momentum. The Ward identity for the correlator

implies that χzz(ω, k) = ω2

k2 χtt(ω, k), so χtt and χzz contain exactly the same information.

But with this scaling, one sees both the diffusive hydrodynamic peak at small frequency

for the low momentum curves, together with the approach of all curves to a common high

frequency value of π
4 N2

c T 2. This constant value is precisely the zero temperature result for

χzz(ω, k)/w2. Our results are consistent, as they must be, with the value of the diffusion

constant previously found in ref. [16],

D =
1

2πT
. (3.23)
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Figure 6: Left: Time-time spectral density divided by frequency, χtt(k
0, k)/w, plotted as a function

of w ≡ k0/(2πT ), for q ≡ k/(2πT ) = 0.1 (blue), 0.2 (red), and 0.3 (green). In the limit of vanishing

spatial momentum, χtt/w approaches a delta-function in frequency. Right: Longitudinal space-

space spectral density divided by frequency squared, χzz(k
0, k)/w2 as a function of frequency, for

q ≡ k/(2πT ) = 0.2 (blue), 0.3 (red), 0.5 (green), 1 (orange), 2 (brown), 3 (black) and 4 (pink).

One sees the diffusive peak for small frequency and momentum, together with the approach to the

zero-temperature result at higher frequency.

One may also easily extract the charge susceptibility of strongly coupled SYM,15

Ξ = 1
8N2

c T 2 . (3.24)

Finally, in figure 7 we plot χµ
µ as a function of q+ ≡ (k0+k3)/(2πT ) for various values

of q− ≡ (k0−k3)/(2πT ). The q− = 0 curve corresponds to light-like momenta; this curve is

an odd function of q+. As one moves away from the lightcone by increasing q−, the curves

with q− small compared to 1 clearly show hydrodynamic “wiggles” at small q+, but this

structure broadens and becomes washed out at larger values of q−.

15Ref. [16] found that χxx(ω, k) = (N2
c T/8π)ω, and χtt(ω, k) = (N2

c T/8π) ωk2/[ω2 + (Dk2)2] with

D = 1/2πT . Comparison with the form (3.22) immediately gives the stated value of the susceptibility

which is, of course, consistent with the Kubo formula DΞ = limω→0
1
6

ω−1χµ
µ(ω, k=0).
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Figure 7: Spectral density trace as a function of q+ ≡ (k0 + k3)/(2πT ) for various values of

q− ≡ (k0 − k3)/(2πT ), plotted in units of N2
c T 2/2. The left side of the plot, q+ < 0 corresponds to

spacelike momenta, while the right side, q+ > 0, is the timelike region. The various curves (from

bottom to top, except near the origin) correspond to q− = 0 (black), 0.1 (blue), 0.2 (red), and 0.3

(green), 0.5 (orange), and 1.0 (brown).

3.3 Electrical conductivity

The electrical conductivity σ can be computed by using the Kubo formula (1.6) expressing

the conductivity in terms of the zero-frequency limit of ηµνC<
µν(K), or equivalently the zero-

frequency slope of the trace of the spectral function of electromagnetic currents (times T ).

The small-frequency behavior of the spectral function of R-currents in strongly coupled

SYM theory was analyzed in ref. [16]. Inserting the limiting low frequency behavior found

in that work into the Kubo formula (1.6), gives

σ = e2 N2
c T

16π
. (3.25)

Using the low frequency behavior of the spectral density (3.19) for null momenta to evaluate

the lightlike Kubo formula (1.7) yields the same value, as it must.

The result (3.25) demonstrates that the conductivity is finite and coupling-independent

in the limit of large coupling. Note that σ is sensitive to the total number of degrees of

freedom in the theory, and therefore is not directly useful as a means of comparing transport

properties in different theories. A more “universal” quantity is obtained by dividing the

conductivity by the charge susceptibility (3.24), giving

σ

e2Ξ
=

1

2πT
, (3.26)

in strongly coupled SYM. This is precisely the diffusion constant of R-charge [16], showing

the consistency of the Einstein relation σ/(e2Ξ) = D.

3.4 Thermal resonances?

In a confining theory like QCD, the spectral density of the zero-temperature current-current

correlator will have delta-function contributions from mesons like the ρ and J/ψ, plus

– 14 –



J
H
E
P
1
2
(
2
0
0
6
)
0
1
5

narrow peaks from other hadronic resonances (with widths vanishing as Nc → ∞). The

delta functions will acquire thermal widths (which are also 1/Nc suppressed) at non-zero

temperature, but for some range of temperatures one will see easily recognizable resonances

with widths small compared to their energies. There is some evidence from lattice studies

that the J/ψ remains a well-defined resonance even at temperatures of a few times Tc [22 –

25], and there has been recent discussion of possible signs of other “bound states” above

Tc [26].

Since it is a conformal theory, N = 4 SYM has no particle spectrum and the zero tem-

perature current-current spectral density (3.3) is featureless. However, one may mock up a

confining theory by considering deformations of the gravitational description of N = 4 SYM

in which one cuts off the AdS space at some value of u = uc, so the coordinate u ranges

from u = 0 (the boundary) to u = uc (the cutoff). According to AdS/CFT duality, string

theory on this cut-off geometry should describe a large Nc field theory with a mass gap,

and hence a discrete spectrum of bound states, determined by the eigenvalues of the corre-

sponding wave equations.16 When the field theory is considered at non-zero temperature,

there will be a confinement/deconfinement transition at a (non-zero) critical temperature

Tc. For temperatures below Tc, the relevant dual gravitational geometry remains the same

as at zero temperature (but with time periodically identified when analytically contin-

ued to Euclidean signature). Above Tc, the field theory will be in a deconfined plasma

phase, and the appropriate dual geometry is AdS-Schwarzschild (times S5). In the simple

hard-wall model, properly comparing the gravitational action of these geometries (which

determines the free energy of the thermal field theory) shows that the transition to the

AdS-Schwarzschild geometry occurs when the hard-wall cutoff is inside the horizon [30].

In this model, the spectral function of R-currents in the low-temperature phase is

temperature independent, and equal to a sum of discrete delta functions, whose locations

are determined by the energies of the bound states, which are eigenvalues of normalizable

fluctuations in the cut-off AdS geometry. Above the critical temperature, the hard-wall

cutoff is hidden by the horizon, and is entirely irrelevant to physics outside the horizon.

The spectral function of R-currents is precisely the same as in pure N = 4 SYM. The

results of section 3.2 explicitly show that the spectral functions have no structure which

could be interpreted as peaks corresponding to narrow resonances which survive in the

high-temperature phase. Thus in the hard-wall model, bound states “dissolve” completely

at the confinement/deconfinement transition. Whether this reflects physical features which

may be shared by real QCD, or is just a pathology of the hard-wall AdS/CFT model, is

not completely clear. We suspect it is a generic feature of light hadrons in confining gauge

theories at Nc = ∞.

4. Photon and dilepton production rates at weak coupling

4.1 Dilepton production

When λ is sufficiently small, one may use weak-coupling methods to compute the photon

16Such “hard-wall” cut-off models were discussed from the earliest days of AdS/CFT, and represent the

simplest version of how confinement may be realized in the dual gravity description [27 – 29].
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Figure 8: Graph needed to compute the dilepton production rate to lowest order. The diagonal

slash represents a “cut” through the diagram; the solid line is either a fermion or a scalar.

and dilepton emission rates. The easiest process to analyze perturbatively is the dilepton

production rate, because it arises already at O(λ0). The simplest way to structure the

calculation is to compute ηµνC<
µν(K) directly. This requires evaluating the single cut, one

loop graph shown in figure 8. The cut lines have the propagator replaced by the appropriate

statistical function times the discontinuity in the propagator (the difference between +iε

and −iε prescriptions), which at this order means the substitution of −i/(p2+m2) by

2π n(p0) δ(p2+m2). Noting that the sum of the charge squared for all SYM Weyl fermions

coincides with that for the charged scalars, and equals 1
2(N2

c − 1), the leading order result

for the Wightman function is17

ηµνC<
µν(K) = −1

2(N2
c −1)

∫

d4P

(2π)4
2πδ(P 2) 2πδ((K−P )2)

{

nb(p
0)nb(k

0−p0) (2P−K)2

+ nf(p
0)nf(k

0−p0) Tr
[

1
2(1−γ5) /Pγµ( /K−/P )γµ

]

}

= −1
2(N2

c −1)

∫

p2dp d cos θpk

4πp
δ(K2 + 2pk0 − 2pk cos θpk)

× K2
{

nb(p
0)nb(k

0−p0) + 2nf(p
0)nf(k

0−p0)
}

, (4.1)

where we used (P−K)2 = 0 to set 2P · K = K2. The integrals are straightforward and

give

ηµνC<
µν(K) =

(N2
c −1)

16π

(−K2)

k

∫ k0+k
2

k0−k
2

dp
[

2nf(p)nf(k
0−p) + nb(p)nb(k0−p)

]

=
(N2

c −1)

16π
(−K2)nb(k

0)

[

3 − 2T

k
ln

1+e−(k0−k)/2T

1+e−(k0+k)/2T
+

T

k
ln

1−e−(k0+k)/2T

1−e−(k0−k)/2T

]

,(4.2)

for timelike K, K2 < 0. Inserting this result into eq. (1.5) yields the actual dilepton

emission rate. To express this in terms of the spectral weight, one must merely remove

the factor nb(k
0); the result differs from the vacuum result by the two logarithmic factors

inside the square bracket, which vanish exponentially for (k0 − k) large compared to T .

4.2 Photon production from 2 ↔ 2 scattering

The one-loop result (4.2) for ηµνC<
µν(K), which is independent of λ = g2Nc , vanishes on

the light cone, K2 = 0. Consequently, the spectral weight for lightlike momenta first arises

17The weak-coupling results of this section are valid for arbitrary Nc .
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Figure 9: Relation of the 2-loop contribution to the current-current correlator and tree-level

2 ↔ 2 scattering diagrams. Interference contributions arise when the gluon runs from one solid line

to the other (not shown).

at the two-loop level. Physically, the timelike spectral weight represents the splitting of

a timelike virtual photon into a pair of charged particles, a process which occurs even in

the absence of strong interactions. In contrast, the lightlike spectral weight represents real

photon production, which only occurs via scattering processes and therefore involves powers

of λ and higher loop orders. A complication is that in a thermal system, the expansion

of physical quantities in powers of λ is not the same as a diagrammatic expansion in the

number of loops. This is a consequence of sensitivity to energy and momentum scales which

are parametrically small compared to T . For lightlike momentum, this complication arises

at the first nontrivial order, and requires an infinite resummation of diagrams to find the

leading order weak-coupling photon production rate [31]. This rate can be understood as

the sum of a contribution from Compton-like 2 ↔ 2 scattering processes [32, 33] and near-

collinear bremsstrahlung and pair-annihilation processes [34], which are further corrected

due to the LPM effect [35 – 37]. A complete treatment for the QCD plasma is given in

refs. [5, 31], and we will extend it here to the case at hand. The main new complications

are the appearance of scalar fields and Yukawa couplings in the 2 ↔ 2 processes, and the

addition of bremsstrahlung from charged scalars, which fortunately was already discussed

in ref. [31].

Consider first the 2 ↔ 2 particle processes where two SYM excitations collide to

produce an SYM excitation and a photon. They arise in the current-current correlator at

the two loop level, as illustrated in figure 9. Calculation of these contributions involves

integrating the squared matrix element for each possible production process over all possible

momenta of the SYM particles, with appropriate population functions and Pauli blocking

or Bose stimulation functions on final states. The resulting contribution to the photon

production rate has the form

e2ηµνC<
µν,2↔2(K) = (4.3)

=

∫

d3p d3p′ d3k′

(2π)92p02p′02k′0
(2π)4δ4(P+P ′−K−K ′)

∑

acd

|Mac
γd|2 na(p)nc(p

′)[1±nd(k
′)] ,

where p,p′ represent the momenta of incoming particles of type a, c, k′ is the momentum

of an outgoing particle of type d, na = nf or nb according to the statistics of species a, and

the ± sign is + if d is a boson and − if d is a fermion. (Note that [1±nd(k
′)] = ek′/T nd(k

′) in

either case.) All external states can be treated as massless, since thermal corrections to their

dispersion relations are suppressed by a power of λ; therefore p0 ≡ p = |p|. The sum
∑

acd

runs over species type, color, spin (including the photon spin), and particle/antiparticle
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Process Diagrams
∑ |M|2 = e2λ(N2

c −1) ×
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Table 1: Fully summed squared matrix elements for all processes, organized by the spin of the

participants: F=spin-1/2 fermion, S=spin-0 scalar, and G=spin-1 gluon. The summation over

spin, species label, color, and particle/antiparticle has already been conducted; for instance, the

FF → γS contribution includes production of both neutral and charged scalars, of either charge.

For the processes involving both fermion and scalar lines, which two of the three diagrams contribute

depends on which two of the three external states carry electric charge.

where appropriate. We have computed these summed matrix elements for the SYM theory

under consideration; the result, organized by the spins of external states, is presented in

table 1.

Those matrix elements with 1/t or 1/u behavior lead to small-angle divergences in the

photon production rate. The best way to see this is to choose coordinates with the z axis

aligned with k. One shifts integration variables from p to q ≡ k − p and uses the spatial

momentum conserving δ-function to perform the k′ integration. Introducing a dummy

integration variable ω via

1 =

∫

dω δ(ω + k0 − p0) , (4.4)

the integration measure in eq. (4.3) can be reduced to [5]

∫

d3p d3p′ d3k′

(2π)92p02p′02k′0
(2π)4δ4(P+P ′−K−K ′) =

1

(4π)3k

∫ ∞

0
dq

∫ min[q,2k−q]

−q
dω

∫ ∞

q+ω
2

dp′
∫ 2π

0

dφ

2π
,

(4.5)
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and in terms of these variables, u/t ' 2kp′(1− cos φ)/q2 at small q. (In this section, q≡|q|,
not to be confused with the normalized momentum in section 3.) The 1/q2 behavior of the

squared matrix element makes up for the two powers of q in the dq and dω integrations,

leading to a logarithmically divergent result. Of course, the photon production rate is

not actually divergent; for sufficiently small q2, the calculation of the matrix element

presented so far is insufficient and requires plasma corrections to the internal propagator

which is responsible for the 1/t (or 1/u) behavior. These corrections become important

when q2 ∼ λT 2, and are referred to as Hard Thermal Loop (HTL) corrections [38]. The

correction moderates the small q behavior of the matrix element and renders the production

rate finite, albeit with an extra logarithmic dependence on 1/λ.

The coefficient of the log is quite easy to compute, using the above behavior of u/t

and the quoted matrix elements for various processes. We find it by extracting the small

q behavior of eq. (4.3) and applying it to the region λT 2 ¿ q2 ¿ T 2. The resulting small

q contribution to ηµνC<
µν is

ηµνC<
µν,2↔2(K) ' 32

λ(N2
c −1)

(4π)3k

∫ qmax

qmin

dq

q

∫ q

−q

dω

q

∫ ∞

0
dp′

∫ 2π

0

dφ

2π
nf(k)

2p′k (1− cos φ) ep′/T

(ep′/T +1)(ep′/T−1)

' λ(N2
c −1)T 2 nf(k)

4π
ln

(

qmax ∼ T

qmin ∼ T
√

λ

)

. (4.6)

Therefore, the log-enhanced part of the photon production rate is

ηµνC<
µν(K) =

λ(N2
c −1)T 2 nf(k)

4π

[

ln λ−1/2 + O(1)
]

. (4.7)

We will use this coefficient to normalize all other contributions to the photon production

rate, which can be written as

ηµνC<
µν(K) =

λ(N2
c −1)T 2 nf(k)

4π

[

lnλ−1/2 + Ctot(k/T ) + O
(
√

λ
)

]

. (4.8)

Some, but not all, contributions to Ctot may be extracted from eq. (4.3). This is done by

evaluating carefully the q2 ∼ T 2 region (using the full matrix element and phase space) and

the q2 ∼ λT 2 region (using small q2 approximations but including HTL corrections in the

matrix element). The small q2 region has already been handled in the literature [32, 33],18

and the hard region can be handled by numerical quadratures integration of eq. (4.3) after

18It is not obvious that the previous analysis [32, 33], which treated the soft momentum region in ordinary

QCD, can be applied unmodified to N=4 SYM. They can, however. First, note that it is only processes

involving fermions (quarks) which give rise to the log, which arises when the quark momentum is small.

Second, the result in the literature only depended on the form of the quark self-energy at soft momentum —

the fermionic hard thermal loop (HTL) self-energy. This is actually the same, up to the overall coefficient,

between QCD and SYM, even though 3/4 of the SYM fermionic self-energy comes about from interactions

with the scalars. To see this, recall that the gluon contribution to the HTL fermion self-energy arises from

the loop integration (in Feynman gauge),

Σ(Q) =
P

Z

K

γµS(Q+K)γνGµν(K) =
P

Z

K

ηµνγµ( /Q+ /K)γν 1

(K + Q)2
1

K2
. (4.9)

The gauge choice is irrelevant when we take the (Q ¿ K) HTL piece, since this piece is gauge invariant.
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Bremsstrahlung Inelastic Pair Annihilation

Figure 10: Basic processes behind bremsstrahlung and inelastic pair annihilation. The gluon

exchange leads to a small angle Coulombic scattering, and the photon is produced by nearly collinear

initial or final state radiation.

using eq. (4.5) to reduce it to a triple integral. A similar set of integration variables is

available for the constant and t/s type matrix elements, see ref. [5]. For large k/T , the

coefficient behaves as 1
2 ln(2k/T ) plus a constant. It is convenient to separate this asymp-

totic behavior so we will write this contribution to Ctot(k/T ) as C2↔2(k/T ) + 1
2 ln(2k/T ).

Results for this quantity are given below in subsection D.

4.3 Near-collinear bremsstrahlung and pair annihilation

Besides the 2 ↔ 2 processes just considered, photons are also produced at leading order by

bremsstrahlung and inelastic pair annihilation, illustrated in figure 10. These contributions

arise because small-angle Coulombic scattering is very efficient; the rate per particle of

Coulomb scattering in the thermal medium is O(λT ), rather than O(λ2T ) as might naively

be expected. And as usual in gauge theories, initial or final state radiation is an efficient

process; photon radiation occurs in O(e2) of such scatterings. This leads to a photon

production rate which is O(λe2T 4), the same order as the 2 ↔ 2 processes just considered.19

Unfortunately, the calculation of photon production via these processes is a little more

complicated than just evaluating the graphs of figure 10. The physical reason that initial

and final state radiation is so efficient is that the wavefunction of the radiated particle,

emerging at a small (collinear) angle, can overlap with the emitter for a long time, so the

amplitude builds up coherently over this large formation time. But in a medium, further

scatterings may occur within this coherence time; photon radiation from different scattering

events can be partially coherent, as noted by Landau over 50 years ago [35 – 37]. One should

therefore consider emission from a charge carrier as it moves through the medium, making a

series of small-angle scatterings. The photon emission vertex can appear at any point along

the trajectory; in computing the probability for an emission, one must integrate over this

time separately in the amplitude for the process and the conjugate of the amplitude. Hence,

there is an integral over the time difference between the photon vertex in the amplitude

and the conjugate amplitude. Because the energy of a state with a particle of momentum

The Yukawa interactions give rise to a loop integral of form

Σ(Q) = −2
P

Z

K

S(Q+K)∆(K) = −2
P

Z

K

( /Q+ /K)
1

(K + Q)2
1

K2
. (4.10)

Using γµγαγµ = −2γα, the gluonic loop contribution immediately collapses to the same result.
19Analogous processes involving scalar exchange do not have the same soft enhancement, and hence are

subleading.
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(p+k) differs from the energy of a state with a particle of momentum p and a photon of

momentum k, there is a phase difference which grows as the time difference becomes large.

One must correctly incorporate the effects of multiple small-angle scatterings occurring

during this extended emission process. The photon production rate is then determined by

summing the resulting photon production from a particular charged particle of momentum

p+k over all charges in the medium. Leaving the detailed derivation to references [31, 5],

the contribution from these processes to the current-current correlator boils down to

ηµνC<
µν,brem+pair(K) = (4.11)

=
N2

c −1

2

∫ ∞

−∞

dp

2π

(

nf(k+p) [1−nf(p)]
[

p2 + (p+k)2
]

4p2(p+k)2
+

nb(k+p) [1+nb(p)]

2p(p+k)

)

×
∫

d2p⊥

(2π)2
Re

[

2p⊥ · f(p⊥, p, k)
]

, (4.12)

where the function f(p⊥, p, k) is the solution to the linear integral equation

2p⊥ =
ik[p2

⊥+m2
∞]

2p(k+p)
f(p⊥, p, k) +

∫

d2q⊥
dΓscatt

d2q⊥

[

f(p⊥, p, k) − f(p⊥+q⊥, p, k)
]

. (4.13)

In the final integral (4.12), p+k is the initial state energy of the particle radiating the

photon and p is its final state energy; when p < 0 the process is pair annihilation (note

that [1± n(p)] = n(−p) so the final state blocking/stimulation function becomes an initial

state population function) and when (p+k) < 0 the antiparticle is the initial particle. The

difference in coefficients between the fermion and scalar contributions in the integral (4.12)

reflects their different DGLAP kernels for photon emission. The integral equation (4.13)

accounts for the evolution of the mixed state |p+k〉〈p, k| through the plasma, that is, for

the evolution after photon emission in the amplitude but before photon emission in the

conjugate amplitude. It has been Fourier transformed into frequency, which makes it easier

to evaluate but harder to interpret; the 2p⊥ comes from the dot product of the photon

polarization tensor with the current; the first, imaginary term accounts for the phase due

to the energy difference, the second term accounts for scattering events. In the imaginary

term, m2
∞ is the dispersion correction that a large momentum (p À

√
λT ) particle receives

due to the thermal medium, p0
on−shell ' p + m2

∞/2p. This turns out to be identical for

scalar, spinor, and gauge degrees of freedom in N = 4 SYM,

m2
∞ = λT 2 . (4.14)

Gelis et al. [39] derived a very compact expression for the differential cross-section for

scattering with transverse momentum exchange q⊥ (after integrating over the longitudinal

momentum exchange),

(2π)2dΓscatt

d2q⊥
= λT

m2
D

q2
⊥(q2

⊥ + m2
D)

, (4.15)

where m2
D = 2m2

∞ = 2λT 2 is the static Debye screening mass.
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Figure 11: Photon emission contributions C2↔2 (blue dashed line), Cbrem (green dot-dashed),

Cpair (red dotted), and Ctot (solid black) as a function of k/T . On the left are the results for N = 4

SYM, and on the right the corresponding contributions for three-flavor massless QCD.

4.4 Photon production results

The integral equation (4.13) can be solved by variational methods or by Fourier transforma-

tion into a differential equation. The same equation appears for both scalar and fermionic

contributions because the scalars and fermions have the same small-angle cross-section

and the same dispersion correction (4.14). The resulting contributions, normalized to the

leading-log coefficient of eq. (4.8), are presented separately in table 2 as the coefficients

Cpair (from the region −k < p < 0) and Cbrem (from p > 0 and p < −k), in addition to the

combined value

Ctot(k/T ) = 1
2 ln

2k

T
+ C2↔2(k/T ) + Cbrem(k/T ) + Cpair(k/T ) . (4.16)

Our numerical results, within the range 0.2 < k/T < 20, are reproduced quite accurately

by the approximate forms

C2↔2(x) ' 2.01x−1 − 0.158 − 0.615 e−0.187 x , (4.17)

and

Cbrem(x) + Cpair(x) ' 0.954x−3/2 ln(2.36 + 1/x) + 0.069 + 0.0289x . (4.18)

The fitting form for C2↔2 has absolute accuracy of 0.02 in this range, and the form for

Cbrem + Cpair has relative accuracy better than 2%. Inserting the result for Ctot(k/T ) into

the leading order form (4.8) for the correlator, and then multiplying by photon phase space

as shown in eq. (1.1), yields the actual photon emission rate. This is plotted in the next

section.
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k/T Cbrem Cpair C2↔2 Ctot

0.10 69.9040 1.32650 19.318681 89.7444

0.15 34.0596 0.886328 12.650618 46.9946

0.20 20.3471 0.666836 9.315910 29.8717

0.30 9.77708 0.448540 5.980593 15.9508

0.40 5.79022 0.340596 4.312890 10.3321

0.50 3.85278 0.276800 3.312841 7.44243

0.75 1.84384 0.194596 1.983390 4.22456

1.0 1.10442 0.156616 1.325792 2.93340

1.5 0.556088 0.125156 0.689320 1.91987

2.0 0.357380 0.116300 0.396190 1.56302

3.0 0.210084 0.122228 0.150245 1.37844

4.0 0.155000 0.140752 0.060109 1.39558

5.0 0.127248 0.164516 0.019349 1.46241

7.5 0.095384 0.232392 −0.023752 1.65805

10.0 0.081252 0.303784 −0.044237 1.83867

12.5 0.073272 0.375504 −0.057057 2.00116

15.0 0.068160 0.446580 −0.065852 2.14949

17.5 0.064608 0.516616 −0.073915 2.28498

20.0 0.062000 0.585444 −0.077076 2.41481

Table 2: Individual contributions plus the combined value for the non-logarithmic constant

Ctot(k/T ) appearing in the leading-order form (4.8) for the current-current correlator (for lightlike

momenta).

The various photon emission contributions are compared in figure 11, for both N = 4

SYM and for three-flavor QCD. Notable differences between our SYM results and the

corresponding results for QCD [5] include the following.

• The function C2↔2(k/T ) grows like T/k for frequencies small compared to T , whereas

in ordinary QCD the corresponding growth is only logarithmic in T/k. This difference

arises from Bose enhancement of scalar annihilation into a photon and a gluon, a

process not available in ordinary QCD. Similarly, Cpair(k/T ) rises at very small k/T

in SYM, but rapidly goes to zero in QCD. This reflects pair annihilation of scalars,

which is doubly Bose enhanced.

• At momenta of a few times T , inelastic processes are comparable in size to the

2 ↔ 2 processes in QCD, but are relatively less important in N = 4 SYM. This is

because the 2 ↔ 2 processes arise mostly from Compton-type scattering, which has

a rate proportional to the fermionic thermal mass, while inelastic processes arise

because of Coulomb scattering, with a rate proportional to the gauge boson thermal

mass. In SYM the fermionic and gauge boson (asymptotic) thermal masses are in

1:1 ratio, while in 3-flavor QCD they are in 4:9 ratio. In addition, inelastic processes

are suppressed in SYM by the larger thermal mass appearing in the first term of
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eq. (4.13). They receive an extra contribution due to bremsstrahlung from scalars,

but this is subdominant for large momentum photons because the DGLAP kernel

coupling photons to scalars in eq. (4.12) is less efficient at producing large momentum

photons than the fermionic DGLAP kernel.

• At momenta of order T or less, bremsstrahlung processes completely dominate the

emission rate in QCD, while in N = 4 SYM the Bose-enhanced scalar 2 ↔ 2 processes

make a significant contribution down to much smaller momenta.

Despite these difference, perhaps the most important feature is how similar the result for

Ctot(k/T ) is between the two theories. As seen in figure 11, the minimum value of Ctot is

quite similar in the two theories. The growth of Ctot(k/T ) with increasing k is a bit slower

in SYM, as compared with Nf = 3 QCD, but in both theories the asymptotic behavior20

is proportional to (k/T )1/2.

At small frequency, for both QCD and SYM, the bremsstrahlung contribution

Cbrem(k/T ) behaves like (T/k)3/2 (up to a log) and becomes very large. For any fixed

photon frequency, this is the correct leading weak-coupling behavior. However, the limits

of small coupling and small frequency do not commute. For any given non-zero gauge cou-

pling, this (T/k)3/2 behavior cannot be valid all the way down to k = 0 because the zero

frequency limit of the correlator ηµνC<
µν(K) is proportional to the electrical conductivity

[as shown by eq. (1.7)], and this must be finite. Our treatment of bremsstrahlung and pair

annihilation requires that photons emitted in response to a soft scattering event be nearly

collinear with the emitting charged particle. This is valid for sufficiently weak coupling at

any given photon frequency, but can fail for parametrically small frequency. As discussed

in some detail in ref. [31], the relevant scale at which our analysis breaks down is k ∼ λ2T .

Below this scale, the growth of Cbrem(k/T ) must be cut off and the correlator ηµνC<
µν(K)

must approach a finite limiting value.

4.5 Electrical conductivity

The detailed behavior of the current-current correlator for k ∼ λ2T is hard to compute.21

The analogous calculation in ordinary QCD has not (yet) been performed (though there

are recent results for vanishing k but nonzero k0 [40]). In this regime, the formation time

of the photon is so long that the emitting particle should be thought of as undergoing

diffusive motion, not quasi-ballistic relativistic motion, during the emission event. We

will not analyze this regime here. However, we can determine the value of the electrical

20This asymptotic growth is slower than linear because of the effect of multiple soft scattering (or LPM

suppression) limiting the formation time of the radiated photon. However, quite large values of k/T are

required to see this asymptotic behavior.
21For momenta λ2T ¿ k ¿ T the photon emission rate is determined by eqs. (4.12) and (4.13), which

(after using rotation invariance in the transverse plane) require the solution of a 1-dimensional integral

equation in p⊥. The complication at k ∼ λ2T is that the relevant values of p⊥ in eq. (4.13) become O(T ),

so the approximation p2
⊥ ¿ p2 can no longer be made. The problem then requires the solution of a 2-

dimensional integral equation. For k ¿ λ2T the angular dependence becomes trivial and the problem is

again reducible to a 1-dimensional integral equation.
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conductivity, to leading logarithmic accuracy, and hence [via eq. (1.7)] the limiting k → 0

value of the Wightman correlator.

As already discussed, the electrical conductivity is set by the diffusion coefficient of

charges. The diffusion length is in turn inversely related to the rate at which scatterings

degrade a net current. The complication is that it is a functional inverse, requiring the

inversion of a collision operator, which can be done approximately using variational tech-

niques. We leave the detailed discussion to the literature [41]; here we summarize the ideas

and outline the differences with respect to QCD.

Two types of scattering process are especially efficient at scattering current-carriers,

making a logarithmically enhanced contribution to the collision operator. The first com-

prises processes with t-channel gluon exchange (“Coulombic” processes); these have an

s2/t2 soft-divergent cross-section, cut off by plasma effects; but since the initial and final

state particles carry the same charge, the effective scattering rate is only log divergent

(i.e., logarithmically sensitive to T/mD). The second comprises processes involving a t-

channel fermion exchange (“Compton-like” processes), which have an s/t soft-divergent

cross-section and which completely re-orient the direction of the charge carrier if the ex-

changed fermion is charged. The rate of Coulombic scattering can be determined directly

from the presentation of ref. [41], though a new complication is that one must treat sep-

arately the departure from equilibrium for scalars and fermions (a complication already

dealt with in ref. [41] in the context of shear viscosity). The Compton-like cross-section

affects both scalar and fermionic particles; the cross-section is 16 times the one found by

naively applying formulae in ref. [41], since each vertex can involve a gauge boson or one

of three scalar fields; however, only half of these scattering processes destroy electrical

current; the other half, in which a neutral fermion is exchanged, flip the charge carrier

between a scalar and a fermion.

Applying the technique presented in ref. [41], taking into account the differences just

described, one finds

σ = 1.28349
e2(N2

c −1)T

λ2 [ln(λ−1/2) + O(1)]
. (4.19)

We have not evaluated the O(1) constant. Note that the 1/λ2 scaling (up to a log) is

exactly what one would find by simply cutting off the k−3/2 small frequency growth of

Cbrem(k/T ) at k ∼ λ2T , and inserting this into eq. (4.8). The behavior of ηµνC<
µν(K) near

k = 0 should smoothly interpolate between the intercept of 4Tσ/e2 and the form (4.8)

which is valid for k À λ2T ; both the limiting intercept, and eq. (4.8), should provide upper

bounds on the actual value of the photon production rate.

5. Discussion

Converting the differential photon emission rate (1.1) into the emission rate (per unit

volume) as a function of photon energy gives

dΓγ

dk
=

αEM

π
k ηµνC<

µν(K) . (5.1)
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At low frequencies, the Wightman function ηµνC<
µν(K) approaches a constant proportional

to the conductivity, as shown by the Kubo formula (1.7), and hence dΓγ/dk is linear in k

for small k,22

dΓγ

dk
=

σ T

π2
k . [small frequency] (5.2)

At high frequencies, the Wightman function is Boltzmann suppressed, as shown by the

relation (1.3) to the spectral density. Therefore, in any equilibrium plasma, the emission

rate as a function of photon energy must rise linearly from zero, reach a maximal value,

and eventually fall exponentially.

In weakly-coupled N = 4 SYM theory, the hydrodynamic regime in which (5.2) ap-

plies is limited to k <∼ λ2T . The slope σT/π2 is parametrically large, as shown by the

result (4.19) for the conductivity, and the maximal value of dΓγ/dk (which we have not

evaluated quantitatively), will be of order αEM(N2
c −1)T 3 (up to a log of λ). For photon

momenta large compared to λ2T , the analysis of section 4 applies and the photon emission

spectrum may be expressed as

dΓγ

dk
= A αEM

π2
k nf(k)m2

∞

[

ln(T/m∞) + Ctot(k/T )
]

, [large frequency] (5.3)

with the coefficient A = 1
4(N2

c − 1) for N = 4 SYM (with our chosen charge assignments

of ±1
2). Here as before, m2

∞ = λT 2 describes the thermal correction to hard fermion

propagation in the medium. Note that if one ignores the k À λ2T condition on the

domain of validity of eq. (5.3) and uses this result all the way down to k = 0, then the

(k/T )−3/2 behavior of Cbrem(k/T ) will cause dΓγ/dk to be singular at k = 0, but because

of the explicit factor of k in the formula (5.3) the singularity is integrable (and the energy-

weighted spectrum is completely finite.)

In strongly coupled N =4 SYM theory, the photon emission spectrum is obtained by

inserting the λ=∞ spectral density (3.18) into eqs. (1.3) and (5.1), giving

dΓγ

dk
=

αEMN2
c T 3

16π2

(k/T )2

ek/T−1

∣

∣

∣

∣

2F1

(

1 − (1+i)k

4πT
, 1 +

(1−i)k

4πT
; 1− ik

2πT
;−1

)

∣

∣

∣

∣

−2

. (5.4)

This is an exact expression (in the large Nc , large λ limit), valid for for all photon energies,

both large and small. Equation (5.4) naturally reproduces the small-momentum form (5.2)

in the hydrodynamic limit, with the electrical conductivity given by (3.25). Thus the slope

of dΓγ/dk at small momentum is coupling-independent in the limit of large coupling, and

is parametrically smaller than the corresponding slope in the weakly coupled theory. The

22In strongly coupled N = 4 SYM theory, small k means k¿T . In weakly coupled N =4 SYM theory,

small k means k¿λ2T , which is the inverse mean-free path for large-angle scattering. One should also keep

in mind that even though ηµνC<
µν(k) can in principle be computed for arbitrarily small k, the right-hand

side of eq. (5.1) ceases to have the interpretation of the photon production rate if k/T becomes comparable

to either eNc , or (e2N2
c /λ)2/3. The first constraint reflects the fact that, due to electromagnetic corrections

to the photon dispersion relation, photons no longer propagate through the plasma like nearly lightlike

excitations if k . eNc T . The second constraint reflects the scale where electromagnetic photon dispersion

corrections can no longer be neglected in the integral equation (4.13). See ref. [31] for details.
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Figure 12: Photo-emission spectrum dΓγ/dk, divided by αEM(N2
c −1)T 3, in N =4 supersymmetric

Yang-Mills theory for λ = ∞ (solid black curve), λ = 0.5 (dashed blue), and λ = 0.2 (dotted red).

As explained in footnote 23, the weak-coupling curves interpolate between the rising small-frequency

result (5.2), valid for k . λ2T , and the falling large-frequency result (5.3), valid for k À λ2T ; the

precise height of the sharp narrow peak is not known.

maximum of dΓγ/dk is attained at kmax ≈ 1.48479T , with the maximal rate of

(

dΓγ

dk

)

max

≈ 0.01567αEMN2
c T 3 . (5.5)

At arbitrary values of the coupling, one must have (dΓγ/dk)max = f(λ)αEMN2
c T 3, where

f(λ) interpolates between the strong-coupling result f(λ→∞) ≈ 0.01567, and the weak-

coupling maximal intensity. To date, the weak-coupling expression for f(λ) has not been

calculated, in any gauge theory. At large momenta, kÀT , the photon rate in strongly

coupled SYM theory decays as k5/3e−k/T , a stronger power than the k3/2e−k/T rate one

finds in the extreme large k limit of the weak-coupling calculation (in which Cpair(k/T ) ∼
k1/2 due to LPM suppression).

Figure 12 illustrates how the photo-emission spectrum evolves as λ increases.23 The

slope at k = 0 (proportional to the conductivity) decreases, the position and width of the

hydrodynamic peak (both proportional to λ2T ) increase, and the amplitude of the spectrum

for k/T >∼ 1 increases [due to the factor of m2
∞ ∝ λ in eq. (5.3)]. Figure 12 also shows

the strong coupling result (5.4). The strong coupling curve differs primarily in having the

23The weak-coupling curves in figures 12 were generated using a smooth interpolation between the small

frequency form (5.2) and the form (5.3) for O(1) values of k/T , with the unknown O(1) constant in the

conductivity (4.19) set to 1
2

ln 9
2
. ref. [42], which evaluated the complete leading-order flavor diffusion

constant (or equivalently, the conductivity) in various QED and QCD-like theories, found that the correct

constant to be added to the log equals this value to within ±8% for a variety of non-Abelian theories

with different matter content. So this is our best guess for the appropriate value for SYM theory. In

addition, the photon rate in strongly coupled SYM theory was plotted with N2
c replaced with N2

c −1 in the

expression (5.4).
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temperature T , and not some smaller scale, set the width of the hydrodynamic regime (in

which dΓγ/dk is approximately linear in k). As a result, there is a broad maximum in the

strong coupling spectrum at kmax ≈ 1.5T . At sufficiently small frequencies, the photon

production rate is largest in the most weakly coupled theory. This is because, at these

frequencies, the photon wavelength is larger than the free path of the particles involved,

so the charges are effectively diffusing; weak coupling means faster diffusion and therefore

more current on such long scales. The cross-over point, below which the weak-coupling rate

exceeds the (λ independent) strong-coupling rate, scales as λ2/3T . At large frequency, the

production rate is greatest in the strongly coupled theory. This is because the spectrum,

for weak coupling, is proportional to the gauge coupling λ ¿ 1 [appearing in eq. (5.3)

as the factor m2
∞ = λT 2], while the spectrum in the strong coupling limit has no such

suppression. The results are clearly consistent with an expectation of smooth evolution

between the weak and strong coupling regimes.24

It is instructive to compare our weak-coupling result for dΓγ/dk with the corresponding

result for QCD [5]. But before this can be done in a meaningful fashion, we must first

address the question of what normalization of the U(1) current in SYM-EM will best mimic

the electromagnetic physics of a real QGP. One can consider various different criteria for

fixing the charge (or current) normalization in order to compare results between different

theories.25 But for our purposes (involving the comparison of electromagnetic emission

phenomena), the most natural criterion for fixing the normalization of the EM current in

SYM-EM is to require that the dilepton emission spectra agree at large invariant mass. This

amounts to demanding that the leading behavior of the current-current spectral density at

large time-like momentum coincide in the two theories. This provides a simple criterion

which will fix the normalization of the current, independent of the interaction strength

in SYM, because all medium dependent corrections to the spectral density χµ
µ(K) vanish

exponentially when |K2| À T 2. Coinciding behavior of current-current spectral density at

large timelike momenta also implies coinciding behavior at large spacelike momenta, and

hence this criterion is the same as demanding that the leading short distance behavior of

the 〈JEM
µ (x)JEM

ν (0)〉 correlator agree between theories. (Hence this criterion is the same

as that used in ref. [29].)

The particular choice of current we made in eq. (2.1) happens to make the fermionic

contribution to the large momentum behavior of the current-current spectral density the

same as in QCD with three flavors (and Nc = 3). This merely reflects the fact that the

sum of squares of the fermion charges coincide. But the scalars of N = 4 SYM contribute

half as much as the fermions to the high momentum spectral density. Consequently, to

24The large momentum behavior of the spectral density ηµνχµν(K), for lightlike momenta, differs quan-

titatively between weak and strong coupling, growing proportional to k1/2 for weak coupling (due to

Cpair(k/T )), and proportional to k2/3 for strong coupling, as seen in eq. (3.19). However, one can eas-

ily imagine that the true asymptotic behavior is a coupling-dependent power-law kν(λ) with an exponent

ν(λ) which smoothly interpolates between the two limiting values.
25For example, requiring equality of the sum of squares of electric charges of all charged fields might seem

natural. Or one could require equality of the EM charge susceptibility, which measures mean square fluc-

tuations in electric charge density. These criteria are different (and both differ from our chosen condition).
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Figure 13: Comparison of leading-order photo-emission spectra for three-flavor massless QCD and

N =4 SYM (for Nc = 3), when the gauge coupling has the same value, αs = 0.1, in both theories.

The upper solid curve shows the SYM result, while the lower dashed curve is the QCD result.

satisfy the condition of coinciding large momentum behavior of the spectral density (for

Nf = Nc = 3), the U(1) current used in our SYM calculations should be rescaled by a

factor of
√

2/3. This we do in the following comparisons.

Once the normalization of the U(1) current is fixed, the only other adjustable param-

eter in the SYM emission spectra is the value of the gauge (or ’t Hooft) coupling λ. If

one compares photon emission in three-flavor QCD and N = 4 SYM, at Nc = 3 and the

same value of the gauge coupling in both theories, then the SYM photo-emission rate is

dramatically larger than the QCD rate, as shown in figure 13. This difference arises be-

cause the scattering rate in the SYM plasma is much higher than in QCD, owing to the

larger number of matter fields and the fact that they are in the adjoint representation. In

particular, the rate at which a quark undergoes photon producing Compton-type scatter-

ing is proportional to m2
∞, which is 9 times larger in SYM than in QCD (for equal values

of the gauge coupling). The rate of Coulomb scattering, important in bremsstrahlung, is

proportional to m2
D, which is 4 times larger.

Because of this difference in scattering rates, it is more appropriate to compare the two

theories with the SYM gauge coupling adjusted to give either the same value of the Debye

mass mD (in which case λSYM = 1
4λQCD), or the same value of m∞ for the fermions as in

QCD (in which case λSYM = 1
9λQCD). Both of these comparisons are shown in figure 14.

With coinciding values of the Debye mass, shown on the left of figure 14, the two spectra are

nearly identical at high momenta, k & 3T , while the SYM rate is larger at lower momenta

(about 75% larger at k/T = 1). When the two theories are compared at coinciding values

of the asymptotic fermion mass m∞, as shown on the right hand plot of figure 14, the

resulting curves are remarkably similar, with the SYM spectrum just a bit below the QCD

result.

A major motivation of this work was the hope that one would be able to translate
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Figure 14: Comparison of leading-order photo-emission spectra for three-flavor massless QCD

(dashed curve) and N = 4 SYM (solid curve) at Nc = 3. Left: equal values of the Debye mass mD

in both theories, corresponding to αSYM = 0.025 in SYM and αs = 0.1 in QCD. Right: equal values

of the asymptotic fermion mass m∞, corresponding to αSYM = 0.011 in SYM and αs = 0.1 in QCD.

knowledge of the photon production rate in strongly coupled SYM into a useful prediction

for the rate in strongly coupled QCD. This seems reasonably plausible given that (for com-

parable numbers of charged quarks) the weak coupling photon spectra of the two theories

are quite similar, as shown in figure 14 — provided one scales the ’t Hooft coupling of SYM

relative to that of QCD by a factor somewhere in the range 4–9. However, it is not clear

if the quark-gluon plasma produced in heavy ion collisions can be well modeled by SYM

plasma in the asymptotically strongly coupled λ → ∞ limit. A comparison of eq. (3.18)

and eq. (4.8) at, say, k = 5T , shows that the weak coupling result approaches within 20%

of the strong coupling result at λSYM ≈ 4. Taking this as a guess for the beginning of

the region where the asymptotic strong coupling result provides a decent approximation,

and applying the above rescaling between SYM and QCD gauge couplings yields αQCD
s in

the range 0.4–1.0, somewhat larger than the values of αs ≈ 0.3–0.5 commonly thought to

be relevant in the QGP formed in heavy ion collisions. Therefore, it may be best to view

the photon production rate in infinitely strongly-coupled SYM, for k/T > 1, as an upper

bound on what we expect the photon production rate from real QGP to be. Nevertheless,

it will be interesting to see if incorporation of the strong coupling SYM spectral functions

into models of photon production in heavy ion collisions improves the comparison with

data. We have recently learned that efforts to do so are underway [43].

Regarding dilepton emission, our results have a simple and more positive implication.

Sufficiently deep in the timelike region, thermal corrections to the spectral function become

very small for both weak and strong coupling. This is shown explicitly in figure 15, which

plots the relative correction to the zero temperature spectral density as a function of√
−K2. If |K2| ≥ (2πT )2, then thermal corrections to spectral function at weak coupling

are under 2%. At strong coupling the corrections are larger, but nevertheless no more
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Figure 15: Relative size of the thermal corrections to the trace of the spectral function, ∆χµ
µ(k0, k)

divided by χµ
µ(k0, k)|T=0, as a function of |K|/(2πT ) =

√

w2 − q2 for q ≡ k/(2πT ) = 0 (black), 1

(blue), 2 (green), and 3 (red). The left panel shows the weak-coupling λ → 0 result, while the right

panel shows the strong coupling λ → ∞ result.

than 15% in this regime. Since the zero temperature spectral density is independent of

coupling, as discussed in section 3, this means that the dilepton spectrum is nearly identical

at weak and strong coupling, as long as the invariant mass of the pair is above 2πT . This

is also consistent with the modest size of the next-to-leading order weak-coupling result

in QCD [44], which is a relative correction of −8
9(αs/2π)(2πT )2/K2. Therefore, for large

invariant mass dilepton pairs, it is undoubtedly an excellent approximation to use the

lowest-order production rate calculation even when the coupling is strong.

Our results for photon and dilepton emission rates at strong coupling can be extended

in a number of obvious ways. One question is how the emission spectra at strong coupling

change if the field theory deviates from the conformally symmetric N = 4 SYM case. As

discussed above, perturbative rates of photon production in conformal N = 4 SYM and in

(non-conformal) QCD do not differ significantly, when compared at the same value of the

thermal fermion mass. This suggests that the presence or absence of conformal symmetry

does not play a decisive role in determining the perturbative photon spectrum. AdS/CFT

can provide a similar comparison at strong coupling. For example, it should be possible

to compute photon and dilepton emission spectra in both mass-deformed N = 4 SYM [45],

and in N =4 SYM at non-zero chemical potential, at strong coupling. A further question is

related to the coupling constant dependence of the emission rates. It would be interesting

to see how the spectrum shown in figure 12 evolves when O(λ−3/2) corrections [46] are

taken into account. It would also be interesting to extend our analysis to theories with

matter fields in the fundamental representation of the gauge group. Adding fundamental

representation matter to N = 4 SYM corresponds, in the gravity dual, to the addition of

D7 branes embedded in the AdS5 × S5 geometry [47]. In such theories, it is natural to

regard a flavor symmetry current of the fundamental matter fields as the electromagnetic

current. Analyzing vector fluctuations on the D7 brane would then allow one to compute,
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at strong coupling, photon production from fundamental representation quarks of arbitrary

mass added to the N = 4 SYM plasma.
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A. Asymptotics of the spectral function

For null momenta (w=q), eq. (3.6a) for the transverse component of the electric field has

the form

E′′
⊥ − 2u

f
E′

⊥ +
w2u

f2
E⊥ = 0 . (A.1)

The solution obeying the incoming wave boundary condition at the horizon (u = 1) is

E⊥(u) = (1 − u)−iw/2(1 + u)−w/2
2F1

(

−1
2(1+i)w , 1− 1

2(1+i)w; 1−iw; 1
2 (1 − u)

)

. (A.2)

We are interested in asymptotics of the solution (A.2) for large and small values of w.

To the best of our knowledge, appropriate asymptotic expansions of the hypergeometric

function are unavailable in the literature. However, such expansions can be readily derived

from the differential equation (A.1) following the approach of ref. [48].

For w À 1, we use the Langer-Olver method [49] for constructing uniform asymptotic

expansions (a version of the WKB approximation). Introducing new variables,

E⊥(u) =
1

√

−f(u)
y(u) , x = −u , (A.3)

one can rewrite eq. (A.1) as

y′′(x) =
w2x − 1

(1 − x2)2
y(x) . (A.4)

For w → ∞, the dominant term on the right-hand side of eq. (A.4) has a simple zero at

x = 0 and thus according to ref. [49] the asymptotics can be expressed in terms of Airy

functions. Moreover, since the coefficients of eq. (A.4) satisfy the conditions of Theorem

3.1 of section XI in ref. [49], one is guaranteed to have a uniform asymptotic expansion for

all u ∈ [0, 1]. The asymptotic expansion is

E⊥(u) ∼ C(w)
√

−f(u)
f̂−1/4(−u) Ai

(

w2/3ζ(−u)
)

+ · · · , (A.5)
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where Ai(z) is the Airy function,26

ζ(x) ≡ 32/3

24/3

(

iπ − 2 arctan
√

x + log

√
x + 1√
x − 1

)

, f̂(x) ≡ x

(1 − x2)2 ζ(x)
, (A.6)

and the ellipses denote corrections that can be systematically computed [49]. The normal-

ization constant,

C(w) = 2
√

πeiπ/4 w1/6 2−iw−w/2 eiπw/4 , (A.7)

is chosen in such a way that the asymptotic expansion (A.5) coincides with the exact solu-

tion (A.2) as u → 1, where E⊥ → (1−u)−iw/2 2−w/2. Using the asymptotic solution (A.5),

for the retarded correlators we find

ΠT (w=q) ∼ −N2
c T 2

8

(−w)2/3 31/3 Γ(2/3)

Γ(1/3)
, w À 1 . (A.8)

Correspondingly, for the trace of the spectral function we obtain

χµ
µ(w=q) ∼ N2

c T 2 w2/3

4

35/6 Γ(2/3)

Γ(1/3)
, w À 1 . (A.9)

In the low-frequency limit, one can solve eq. (A.1) perturbatively using w ¿ 1 as a

small parameter. Since this procedure is well known (see, for example, refs. [48, 16]), we

omit the details. The retarded correlator for w ¿ 1 is given by

ΠT (w=q) = − i
8N2

c T 2 w
[

1 + iw log 2 − 1
12π2w2 + O(w3)

]

, (A.10)

and the resulting trace of the spectral function is

χµ
µ(w=q) = 1

2N2
c T 2 w

[

1 − 1
12π2 w2 + O(w4)

]

. (A.11)

References

[1] For a review, see P. Stankus, Direct photon production in relativistic heavy-ion collisions,

Ann. Rev. Nucl. Part. Sci. 55 (2005) 517

[2] PHENIX collaboration, S.S. Adler et al., Measurement of identified π0 and inclusive photon

v2 and implication to the direct photon production in s(NN)1/2 = 200 GeV Au + Au

collisions, Phys. Rev. Lett. 96 (2006) 032302 [nucl-ex/0508019].

[3] PHENIX collaboration, S.S. Adler et al., Centrality dependence of direct photon production

in s(NN)1/2 = 200 GeV Au + Au collisions, Phys. Rev. Lett. 94 (2005) 232301

[nucl-ex/0503003].

[4] L.E. Gordon and W. Vogelsang, Polarized and unpolarized prompt photon production beyond

the leading order, Phys. Rev. D 48 (1993) 3136.

[5] P. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from quark gluon plasma: complete

leading order results, JHEP 12 (2001) 009 [hep-ph/0111107].

26The choice of the Airy function Ai(z) rather than Bi(z) is dictated by the incoming wave boundary

conditions at the horizon.

– 33 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C96%2C032302
http://arxiv.org/abs/nucl-ex/0508019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C94%2C232301
http://arxiv.org/abs/nucl-ex/0503003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C3136
http://jhep.sissa.it/stdsearch?paper=12%282001%29009
http://arxiv.org/abs/hep-ph/0111107


J
H
E
P
1
2
(
2
0
0
6
)
0
1
5

[6] See, for example M. Le Bellac, Thermal field theory, Cambridge, 1996.

[7] P. Aurenche, F. Gelis, G.D. Moore and H. Zaraket, Landau-Pomeranchuk-Migdal

resummation for dilepton production, JHEP 12 (2002) 006 [hep-ph/0211036].

[8] F. Karsch, E. Laermann, P. Petreczky, S. Stickan and I. Wetzorke, A lattice calculation of

thermal dilepton rates, Phys. Lett. B 530 (2002) 147 [hep-lat/0110208].

[9] S. Gupta, The electrical conductivity and soft photon emissivity of the QCD plasma, Phys.

Lett. B 597 (2004) 57 [hep-lat/0301006].

[10] G. Aarts, C. Allton, J. Foley, S. Hands and S. Kim, Meson spectral functions at nonzero

momentum in hot QCD, hep-lat/0607012.

[11] J.-P. Blaizot and F. Gelis, Photon and dilepton production in the quark-gluon plasma:

perturbation theory vs lattice QCD, Eur. Phys. J. C 43 (2005) 375 [hep-ph/0504144].

[12] For a review, see O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N

field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111].

[13] P. Kovtun and A. Starinets, Thermal spectral functions of strongly coupled N = 4

supersymmetric Yang-Mills theory, Phys. Rev. Lett. 96 (2006) 131601 [hep-th/0602059].

[14] D. Teaney, Finite temperature spectral densities of momentum and R-charge correlators in

N = 4 Yang-Mills theory, Phys. Rev. D 74 (2006) 045025 [hep-ph/0602044].

[15] D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence:

recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051].

[16] G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to

hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052].
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